Apr 12: Field extersins
Quir 1 - dommoal "Quiz 1" wher you want to rtant yor 30 mir - uploal "Uploal quir 1"

Today

- field extersons $F \rightarrow K$
- degree $[K: F]=\operatorname{din}_{F} K$
- vector spaces \# basis
- irreducible polyunial \& Eiseistein
- simple fiell extersion

Following 11.1 in Hingertard
$\oint 1$ Vector spares
Let Y be a vector space over a fied F.

LHave addrition in V scabar nult of F acting on V

- Abasis of V is a set $\left\{v_{1}, v_{2}, \ldots\right.$ such that every $x \in V$ can be uniquelly wirten as

$$
x=a_{1} v_{1}+a_{2} v_{2}+\cdots
$$

- $\operatorname{dim}_{F} V=甘$ elements of basis

Ex: $\operatorname{dim}_{F} F[x]=\infty$

$$
\text { Ex: } \begin{aligned}
& \operatorname{dim}_{F} F[x]=\infty \\
&\left\{1, x, x^{2}, \ldots\right. \\
& \text { is basis } \\
& \operatorname{dim}_{F} F[x] / x^{n}= n \text { blc } \\
&\left\{1, x, x^{2}, \ldots x^{n-1}\right\}
\end{aligned}
$$

Dets A fiech extersion is a homomouphisn $F \rightarrow K$ of fedcs. Rank: $F \rightarrow K$ is injective.
If $F \xrightarrow{\not 2} K$ is a ficld extevin, ther we can view K as a voudr space over F.

Tadd in K is adelith Gine $\alpha \in F$ and $x \in K$, then $\alpha x \in K$ proluct war $(2 x=\underbrace{\phi(\alpha)}_{\text {ink }} \cdot \underbrace{I}_{i n k})^{\text {niew }}$
Ex: $\mathbb{R}{ }^{\phi}+\mathbb{C}$
$E_{x:} \mathbb{R} \longrightarrow \mathbb{R}[x]$ not Fecal ext $\mathbb{R}+\mathbb{R}(x)$ fich ect

Deter A feck extension is a homomouphism $F \rightarrow K$ of feds.
Rank: $F \rightarrow K$ is infective
If $F \rightarrow K$ is a field extension, then we can view K as a voudr space over F.

Deter The clegre of a field extension $F \rightarrow K$ is

$$
[K: F]:=\operatorname{dim}_{F} K
$$

dim of K as a rube spare

Ex: $[p: \mathbb{R}]=2$

$$
\begin{aligned}
& {[Q(i): Q]=2} \\
& {[Q(\sqrt{2}): Q]=3}
\end{aligned}
$$

(reason: $1, \frac{\sqrt[1]{2}}{\sqrt{2}} \sqrt[3]{4}$ basis)

$$
\text { HL } 3.2(b)
$$

Deft Let $F \rightarrow K$ field ext.

- Let $\alpha \in K$
$F(\alpha)$ is the smallest subtiach of K containing α and F.
- Let $\alpha_{1}, \ldots, \alpha_{n} \in K$
$F\left(\alpha_{y}\right.$, , dis is the smallest subtized of K containing α_{i} and F.
- We say $F \rightarrow K$ is simple if $K=F(2)$ for some $\alpha \in \mathbb{K}$.
\$2. Irred polyonial L Fied
Fact If $f \in F[x]$ irred, then $F[X] /(f)$ is a field and $F \rightarrow F[x] /(F)$ fied
Relatel to Priblen 3.3
\rightarrow Fant: $\left\{1, x, x^{2}, \cdots, x^{d-1}\right\}$ is a basis of $F[x] /(t)$ over F.
Here: $d=\operatorname{deg} f$
$\Longrightarrow \operatorname{dim}_{F} F[x] /(t)=d$
$[F[x] /(f): F]=d$
Ex1 $\quad x^{2}+1 \in \mathbb{R}[x]$ irred

$$
\mathbb{R} \longrightarrow \mathbb{R}[x] /\left(x^{2}+1\right) \cong \mathbb{C}
$$

Ex 2

$$
\left.\frac{x}{B[\sqrt{2}}\right) \cong Q[x] /\left(x^{3}-2\right)
$$

Recall a conpte technigus to show that $f \in \mathbb{Z}[x]$, ired
(1) If $\operatorname{deg} f=2$ or 3 , can just checce it has no noits
(2) If \exists prime $p \in Z$ swhen that the image of f moder $\pi[x] \rightarrow z / p=A$ is irredenibe, thon f is irredian
(3) Eisensten's criterion $f=a_{n} x^{n}+a_{n}-x^{n-1} \cdots a_{0}$
\exists prome $p \in M$ suce that
(1) $p \nmid a_{n}$
(2) $p \mid a_{n-1,1}, a_{0}$
(3) $p^{2} \times a_{0}$

Question: Is $Q \rightarrow Q(\sqrt{2}, \sqrt{3})$ a
simple feel externs?
[Recall this maces $\exists \alpha \in Q(\sqrt{2}, \sqrt{3})$
S. $Q(\alpha)=Q(\sqrt{2}, \sqrt{3})$

$$
\begin{aligned}
& \sqrt{6} \in Q(\sqrt{2}, \sqrt{3}) \\
& Q \rightarrow Q(\sqrt{6}) \rightarrow Q(\sqrt{2}, \sqrt{3})
\end{aligned}
$$

Con view

Answer: $Q \longrightarrow Q(\sqrt{2}, \sqrt{3})$ is
cordodates $\sqrt[4]{6}$

$$
\begin{aligned}
& \sqrt{2}-\sqrt{3}=\sqrt{6} \\
& \sqrt{2}+\sqrt{3}
\end{aligned}
$$

$$
|Q(\sqrt{2}, \sqrt{2}): Q|=4
$$

$$
|\theta(\sqrt{6}): \theta|=2
$$

